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Abstract

The common GIS-based approach to regional analyses of soil organic carbon (SOC) stocks and changes is to define geographic layers for

which unique sets of driving variables are derived, which include land use, climate, and soils. These GIS layers, with their associated attribute

data, can then be fed into a range of empirical and dynamic models. Common methodologies for collating and formatting regional data sets on

land use, climate, and soils were adopted for the project Assessment of Soil Organic Carbon Stocks and Changes at National Scale (GEFSOC).

This permitted the development of a uniform protocol for handling the various input for the dynamic GEFSOC Modelling System.

Consistent soil data sets for Amazon-Brazil, the Indo-Gangetic Plains (IGP) of India, Jordan and Kenya, the case study areas considered in

the GEFSOC project, were prepared using methodologies developed for the World Soils and Terrain Database (SOTER). The approach

involved three main stages: (1) compiling new soil geographic and attribute data in SOTER format; (2) using expert estimates and common

sense to fill selected gaps in the measured or primary data; (3) using a scheme of taxonomy-based pedotransfer rules and expert-rules to derive

soil parameter estimates for similar soil units with missing soil analytical data. The most appropriate approach varied from country to country,

depending largely on the overall accessibility and quality of the primary soil data available in the case study areas.

The secondary SOTER data sets discussed here are appropriate for a wide range of environmental applications at national scale. These

include agro-ecological zoning, land evaluation, modelling of soil C stocks and changes, and studies of soil vulnerability to pollution.

Estimates of national-scale stocks of SOC, calculated using SOTER methods, are presented as a first example of database application.

Independent estimates of SOC stocks are needed to evaluate the outcome of the GEFSOC Modelling System for current conditions of land use

and climate.

# 2007 Elsevier B.V. All rights reserved.

Keywords: Organic carbon; SOTER database; Soil parameter estimates; Taxotransfer rules

1. Introduction

Present and future needs for soil information include an

up-to-date geographical coverage, access to secondary soil

information obtained via pedotransfer functions or models

from the primary (measured) data, and monitoring of

changes in soil characteristics as associated, for example,

with changes in land use systems and processes of global

change (Batjes, 2002; Baumgardner, 1999; Bullock, 1999).

The ordinary GIS-based approach to regional analysis is to

develop geographic layers for which unique sets of driving
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variables are presented, such as land use, climate and soils

(Batjes, 2004a; Falloon et al., 2002; Paustian et al., 1997).

These GIS layers, and the underlying attribute data, can then

be used as input for a range of empirical and dynamic

models.

Common methodologies for collating and formatting

regional data sets on land use, climate and soils were

adopted for the Global Environmental Facility (GEF) co-

financed project Assessment of Soil Organic Carbon Stocks

and Change at National Scale (GEFSOC, 2003; Milne et al.,

2007-a). This was essential to permit development of a

uniform protocol for handling the inputs for the Global

Environment Soil Organic Carbon Modelling System

(hereafter referred to as the GEFSOC system) (Easter et

al., 2007). This generic system couples two dynamic C

models (Century and RothC) and an empirical model (IPCC,

2003) with GIS. It can be used to quantify the potential

impact of land use/management and climate scenarios on

sequestration of organic C in soils at national and sub-

national scale.

This paper focuses on the collation, screening, and

consolidation of soil and terrain data for the four GEFSOC

case study areas: Amazon-Brazil, the Indo-Gangetic Plains

(IGP) of India, Kenya, and Jordan. First, we discuss how the

primary data have been collated using the methodology of

the World Soils and Terrain Database (SOTER). SOTER is a

collaborative activity of ISRIC, FAO, and UNEP, carried out

under the aegis of the International Union of Soil Sciences

(Oldeman and van Engelen, 1993; van Engelen and Wen,

1995). The methodology has been applied in various regions

of the world at scales ranging to 1:100,000–1: 5,000,000

(van Engelen, 1999). Continental scale, SOTER databases

are now available for Latin America and the Caribbean

(FAO, 1998b), Central and Eastern Europe (FAO and ISRIC,

2000) and Southern Africa (FAO and ISRIC, 2003), while

work for Europe (King et al., 2002) and Central Africa is in

progress. Interim products, with only limited soil profile data

included, are available for north-eastern Africa (FAO,

1998a) and North and Central Eurasia (FAO and IIASA,

1999). Ultimately, once global coverage has been achieved,

SOTER is to replace the 1:5,000,000 Soil Map of the World

(FAO, 1995; Nachtergaele and Oldeman, 2002).

SOTER involves no new ground surveys, being based upon

available data. The spatial data are compiled using a method

that resembles physiographic soil mapping or land systems

mapping, increasingly using digital elevation models and

computer algorithms to generalize the available soil

geographic information (Dobos et al., 2002; King et al.,

2002; van Engelen and Huting, 2004). The scale of mapping

determines the level of soil information that can be shown –

ideally, it should coincide with the spatial and temporal scales

of the processes that are going to be modelled and the

questions to be answered (Middelburg et al., 1999; Paustian

et al., 1997; Wessman, 1992). Possible sources of uncertainty

in spatial soil data, vis a vis those found in observational

(measured) data, have been discussed elsewhere (Bregt and

Beemster, 1989; Burrough, 1986; Goodchild, 1994; Landon,

1991).

Inherently, national scale SOTER databases encompass a

marked degree of data integration, the aim being to simplify

the geographical distribution of soil types to a regionally

representative pattern. These soil types are then character-

ized using a suite of representative profiles (van Engelen and

Wen, 1995), selected by national experts. The necessary

measured (i.e. primary) soil profile data are mainly compiled

from soil survey reports; typically, they have been sampled

and characterized over a number of years (e.g., 1970–2000).

These reports seldom contain all the mandatory attributes

required for SOTER, resulting in gaps in the databases. The

latter often preclude the direct use of the primary data in

environmental assessments and modelling—until the pre-

sent time, gaps had to be filled using tailor-made solutions

(Batjes and Dijkshoorn, 1999; Mantel and van Engelen,

1999). Therefore, a standardized procedure was developed

to fill gaps in the primary data (Batjes, 2003). Subsequently,

the resulting secondary SOTER data were used to estimate

stocks of SOC, using so-called mapping approaches. At a

later stage in the project, these estimates were used to

evaluate the output of the GEFSOC system for the Kyoto

baseline year (1990); results of the latter work have been

detailed elsewhere (Al-Adamat et al., 2007; Bhattacharyya

et al., 2007; Cerri et al., 2007; Kamoni et al., 2007). Findings

of the subsequent scenario work (2000–2030) can

support land-use policy formulation and may be used to

take actions to mitigate climate change and take advantage

of the emerging C market, as described by Milne et al.

(2007-b).

2. Compilation of primary SOTER databases

2.1. SOTER methodology

The SOTER methodology allows mapping and char-

acterization of areas of land with a distinctive, often

repetitive, pattern of landform, lithology, surface form,

slope, parent material, and soils (Fig. 1).

Each SOTER database comprises a geographic and an

attribute-data component. The geographic database holds

information on the location, extent, and topology of each

SOTER unit—this information is managed using a

geographic information system (GIS). The attribute

database describes the characteristics of the spatial unit;

it comprises both area data and point data—this information

is handled using a relational database management system

(RDBMS).

Each soil component within a SOTER unit is character-

ized by a typical profile (Fig. 1), identified as being

regionally representative by national soil experts. Being

derived from soil survey reports, complete and uniform sets

of soil analytical data were seldom available for all these

profiles. Therefore, gaps in the measured data were filled

N.H. Batjes et al. / Agriculture, Ecosystems and Environment 122 (2007) 26–34 27
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using a system of taxotransfer rules, that is taxonomy-based

pedotransfer rules and expert-rules (see Section 3.3).

2.2. Data compilation

The scale at which data were compiled for the national

SOTER databases was determined by the different needs of

each host country. Consequently, the SOTER databases

considered here have different scales: 1:500,000 for Jordan,

1:1,000,000 for Kenya and IGP-India, and 1:5,000,000 for

Amazon-Brazil. The level of detail, both in terms of soil

geographical and attribute data presented, can also vary

depending on the base materials available in each case study

area.

Jordan, Kenya and Brazil already had a national scale

SOTER database (ACSAD, 1996; FAO, 1998b; KSS, 1995;

NSMLUP, 1996), but this was not so for IGP-India.

Following a SOTER training session, the National Bureau

for Soil Survey and Land Use Planning compiled a

compatible data set for IGP-India (Chandran et al., 2005).

All four primary SOTER/GIS sets were screened, con-

solidated and re-formatted during the GEFSOC project.

3. Preparation of secondary SOTER data sets

3.1. Selection of soil variables

Special attention was paid to the inputs required by the

process-based C-models (RothC and Century) embodied in

the GEFSOC system, i.e. location and relative extent of soil

type, soil drainage status (hydricity), content of clay, sand

and silt, content of organic C and bulk density per depth

layer (Falloon et al., 1998; Paustian et al., 1997). This

limited set was expanded to include 18 soil variables

(Table 1) to permit a wider range of assessments such as land

evaluation, agro-ecological zoning, modelling of food

productivity and studies of soil gaseous fluxes.

3.2. Procedures for filling gaps in the measured data

The gap-filling procedure involved three stages (Batjes,

2003), the desirability of which decreases from highest

(Stage 1) to lowest (Stage 3):

� Stage 1: Collate additional soil geographic and attribute

data where these exist, in the uniform SOTER format.

� Stage 2: Use expert estimates and common sense to fill

selected gaps in the measured data in a secondary data set.

� Stage 3: Use taxotransfer rules to derive soil parameter

estimates for similar FAO soil units, clustered by textural

class and depth range, complemented with a system of

expert rules.

N.H. Batjes et al. / Agriculture, Ecosystems and Environment 122 (2007) 26–3428

Fig. 1. Representation of SOTER units and conceptual structure of a SOTER unit.

Table 1

Soil variables considered in secondary SOTER databases (Batjes, 2003)

Organic carbon

Total nitrogen

Soil reaction (pHH2O)

Cation exchange capacity (CECsoil)

Cation exchange capacity of clay size fraction (CECclay)a

Base saturation (as % of CECsoil)

Effective cation exchange capacity (ECEC)b

Aluminium saturation (as % of ECEC)

CaCO3 content

Gypsum content

Exchangeable sodium percentage (ESP)

Electrical conductivity of saturated paste (ECe)

Bulk density

Coarse fragments (vol.%)

Sand (mass%)

Silt (mass%)

Clay (mass%)

Available water capacity (AWC; cm to specified depth, from �33

to �1500 kPa; % v/v)

a CECclay was calculated from CECsoil by assuming a mean contribution

of 350 cmolc kg�1 OC, the common range being from 150 to over

750 cmolc kg�1 (Klamt and Sombroek, 1988).
b ECEC was defined as exchangeable (Ca2+ + Mg2+ + K+ + Na+) +

exchangeable (H+ + Al3+) (van Reeuwijk, 2002).



Aut
ho

r's
   

pe
rs

on
al

   
co

pyBy their nature, stages 1 and 2 were the primary

responsibility of the in-country case study partners while

ISRIC’s work was focussed on methodology development

and the actual preparation of the secondary SOTER data.

The most appropriate option(s) varied from country to

country, depending largely on the overall accessibility to

and quality of the available data (Table 2) as well as the

time-schedule and objectives of the project (Milne et al.,

2007-a).

During stage 1, for example, there was no direct need to

collate additional profile data for the Brazilian SOTER (see

Batjes et al., 2004a, pp. 8–9)—even though a wider range of

profiles was available (Bernoux et al., 2003; Cooper et al.,

2005). The opposite was true for Jordan; however, soil/GIS

data from a preceding country-wide soil and land use

mapping project (see Al-Qudah, 2001) were found to have

been corrupted, thus precluding their use in the GEFSOC

project. Conversely, Kenya Soil Survey provided some

50 new profiles for their country. The National Bureau for

Soil Survey and Land Use Planning, Nagpur, compiled

completely new soil and terrain data for IGP-India

(Chandran et al., 2005).

During stage 2, a number of synthetic and virtual soil

profiles had to be created for Jordan (9) and Kenya (47),

while this was not necessary for Amazon-Brazil and IGP-

India. Synthetic profiles can be introduced in SOTER when

no measured data are available for a given soil component,

provided the classification of the corresponding FAO soil

unit is known. The required SOTER attributes are then

estimated by national experts, based on their knowledge of

local soil conditions. Alternatively, when this is not feasible,

so-called virtual profiles can be defined—estimates for the

corresponding soil parameters will then have to be derived

using taxotransfer- and expert-rules. All synthetic and

virtual profiles were flagged to avoid confusion with real

(measured) profiles in the data sets. Finally, during Stage 3,

the scheme of taxotransfer- and expert-rules was applied

resulting in four new, consistent, secondary SOTER data

sets; the procedure is detailed in Section 3.3.

The status of data sets, screened and consolidated during

the GEFSOC project, is summarized in Table 3. Generally,

at the small scales under consideration, most SOTER units

were mapped as complexes comprising several soil compo-

nents, except for IGP-India (Chandran et al., 2005). Details

may be found in the technical reports for Brazil (Batjes et al.,

2004a), IGP-India (Batjes et al., 2004b), Jordan (Batjes et al.,

2003), and Kenya (Batjes and Gicheru, 2004).

3.3. Development and application of taxotransfer- and

expert-rules

3.3.1. Definition and procedures

Gaps in the measured data were filled using a scheme of

taxotransfer and expert-rules. A taxotransfer function is a

means of estimating soil parameters based on modal soil

characteristics of soil units from a combination of their

classification name, which by definition implies a certain

range for various soil attributes, expert knowledge and

empirical rules, and statistical analysis of a large number of

soil profiles belonging to the same taxon (Batjes et al.,

1997). The elaboration of taxotransfer rules thus requires the

availability of large soil profile databases such as WISE

(Batjes and Bridges, 1994).

The work reported here expanded on ISRIC’s taxotrans-

fer-related work with FAO and IIASA (Batjes et al., 1997)

and a follow up study for IFPRI (Batjes, 2002), which

focussed on applications of the 1:5 M scale Soil Map of the

World (FAO, 1995). During the GEFSOC project, however,

an updated procedure was developed for use with primary

SOTER databases. The procedure considers the Revised

Legend (FAO, 1988) and uses a more detailed procedure for

aggregating the soil profile data; data for each soil unit are

now clustered according to five textural classes (CEC, 1985)

and five depth ranges (0–20, 20–40, 40–60, 60–80 and 80–

100 cm). Conversely, only two depth classes (0–30 and 30–

100 cm) and three topsoil textural classes were used in the

preceding taxotransfer-work for use with the Soil Map of the

World, which considered the original legend (FAO-Unesco,

1974).

N.H. Batjes et al. / Agriculture, Ecosystems and Environment 122 (2007) 26–34 29

Table 2

Overview of SOTER-activities undertaken for each case study area

Stagea Case study area

Amazon-Brazil IGP-India Jordan Kenya

1 – Xa – X

2 – – X X

3 X X X X

a Stages 1–3 are detailed in the text; the Xs indicate which of these

activities have been undertaken in each country.

Table 3

Main characteristics of SOTER databases consolidated for the GEFSOC project

Case study area Scale Area (�1000 km2) Number of Profile density (per 1000 km2)

Polygons Unique SUs SCs per SUa Profiles

Brazil-Amazon 1:5 M 5100 571 299 1–5 331 0.06

Kenya 1:1 M 583 3261 397 1–4 495b 0.8

IGP-India 1:1 M 480 497 36 1 36 0.08

Jordan 1:0.5 M 89 47 27 1–4 48b 0.5

a SU: SOTER unit; SC: soil component (see Fig. 1).
b Includes a number of synthetic and virtual profiles as detailed in the country reports.
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The present scheme was based on statistical analyses of

some 9600 profiles held in the ISRIC-WISE database,

corresponding with over 43,000 horizons. Analyses of these

data, so far, have permitted definition of 38,683 rules in total.

The cut-off point for defining and applying any taxotransfer

rule was that there were at least five observations for the soil

unit, depth zone, soil textural class and attribute under

consideration (i.e., nWISE < 5) (see Batjes, 2003 for a

detailed discussion of the procedure).

In spite of the rather large number of taxotransfer-rules

presently available, it has been necessary to introduce a

number of expert-based rules. These rules take into

consideration whether certain combinations of soil para-

meter estimates are considered pedo-chemically feasible or

relevant for a specific soil unit. For example, the aluminium

saturation percentage cannot be more than zero in soils with

a high pH or, alternatively, calcium carbonate will not be

present at low pH values. So far, 28 expert-rules have been

defined (Batjes, 2003).

3.3.2. Flagging rules

All taxotransfer- and expert-rules have been flagged in

the secondary databases to provide an indication of the

inferred confidence in the soil parameter estimates presented

(see Batjes and Gicheru, 2004; Batjes et al., 2003, 2004a,

2004b). The overall assumption has been that the confidence

in a taxotransfer-based parameter estimate should increase

with the size of the sample populations present in WISE. In

addition, the confidence in soil parameter estimates derived

from similar soil units should be higher than for those that

had to be derived from similar major groups. However, a

high inferred-confidence rating does not necessarily imply

that the soil parameter estimates shown will be representa-

tive of the soil component under consideration. Profile

selection for SOTER and WISE, like for any other regional

soil database, is not probabilistic but based on available data

and expert judgement. In addition, several of the soil

properties under consideration here are readily modified by

changes in land use, for example soil pH, soil salinity,

aluminium saturation and organic matter content, and

information on land use/management history was seldom

available.

3.4. Linkage to GIS

The soil parameter estimates for the constituent soil

components of a given SOTER unit – as characterized by the

typical profiles (see Fig. 1) – were linked to the SOTER/GIS

files, using the unique SOTER unit identifiers. The resulting,

harmonized data sets can be used for a wide range of

applications, including agro-ecological zoning, land evalua-

tion, modelling of soil C stocks and changes, and studies of

soil vulnerability to pollution. The following section shows

how the secondary SOTER data have been used in the

GEFSOC project concerned with estimating current and

future changes under the influence of land use change.

4. Applications of the SOTER-GIS sets

4.1. Estimates of current SOC stocks

The project included a comparison of estimates of

national SOC stocks computed with the GEFSOC system

with independent estimates obtained using conventional

mapping approaches. The latter generally involve combin-

ing soil or soil/vegetation map units with soil point data.

Map-based estimates of base line SOC stocks were

available for Amazon-Brazil (Bernoux et al., 2002; Cerri

et al., 2000; de Moraes et al., 1995) and India (Bhattachar-

yya et al., 2000a, 2000b, 2004; Velayutham et al., 2000).

This was not the case for Kenya and Jordan therefore, new

methods were developed to compute SOC stocks using the

secondary SOTER data discussed here.

Kenya was used for methodology development; four

different methods were compared (Batjes, 2004b):

(a) The SOC content (0–30 and 0–100 cm) computed for

each representative profile was linked to the spatial

information held on the GIS map annexe database.

(b) As above, but using the average SOC content for each

FAO soil unit.

(c) As above, but using the median SOC content.

(d) Through simulation of phenoforms. For each soil

genoform – here assumed to correspond with a given

representative or typical profile (see Fig. 1) – different

phenoforms were defined as resulting from differences

or changes in soil management (Bouma et al., 1998b;

Droogers and Bouma, 1997). Thereby, this practical

approach permits the computation of variability in

measured soil values within each soil component – the

latter reflects both variations in the soil and those

associated with the methods of sampling and measure-

ment (Batjes, 2004b). Possible effects of mapped

variation in soil conditions – i.e., the spatial data –

on estimates of soil C stocks are also important, and

these have been studied in an earlier paper (Batjes,

2000).

Method (d) was found to be the most useful, because it

can be used to define 95% confidence intervals for median

soil C stocks at national scale, as opposed to the single

estimates obtained with methods (a)–(c) (Batjes, 2004b). So

it was selected for use with secondary SOTER data sets

(Table 4).

For Amazon-Brazil, estimates of total SOC obtained by

other researchers, using different methods, were in close

agreement to the value obtained in the current work despite

the different spatial patterns mapped by these methods. This

comparison provides a validation of method (d) (Batjes,

2005). By contrast our SOC estimates for IGP-India differed

by 8% (0–30 cm) and 25% (0–100 cm) from earlier

estimates (Bhattacharyya et al., 2004): 630 Tg C for 0–

30 cm and 1560 Tg C for 0–100 cm. Possible reasons for

N.H. Batjes et al. / Agriculture, Ecosystems and Environment 122 (2007) 26–3430
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these differences are: (a) all soil components were

characterized by a single soil unit/profile in IGP-SOTER

(Table 3), whereas the underlying soil associations have

been described by 2–3 soil types on the source maps

(Chandran et al., 2005, p. 42–44); (b) somewhat different

boundaries have been used for the Indo-Gangetic Plains,

India, in various studies (see Chandran et al., 2005); (c)

missing bulk density data have been estimated using

different procedures; (d) the SOTER-based estimates are

95% confidence intervals for median SOC stocks as opposed

to average stocks (Bhattacharyya et al., 2004). Typically, the

median is more robust than the mean and more resistant to

erratic extreme observations (Snedecor and Cochran, 1980).

4.2. Projected changes in SOC stocks

The secondary SOTER-GIS data were also used to assess

SOC stocks and changes for defined scenarios of land use

and climate change with the GEFSOC system (Easter et al.,

2005). This modelling tool can compute SOC stocks using

three procedures: two process-based C-models (RothC and

Century) and the empirical IPCC-method (IPCC, 2003). The

output of the GEFSOC system for 1990, the Kyoto baseline

year, has been evaluated using the independent SOC

estimates presented in Table 4; results have been detailed

elsewhere (Al-Adamat et al., 2007; Bhattacharyya et al.,

2007; Cerri et al., 2007; Kamoni et al., 2007). Falloon et al.

(2007) discussed possible impacts of modelled climate

change on soil and vegetation C storage in the case study

areas.

4.3. Other uses

Complementary to the direct project goals (Milne et al.,

2007-a), the secondary SOTER datasets for Kenya and

Jordan were also used to: (1) calculate the stocks of organic

(SOC) and inorganic (SIC) or carbonate C per agro-

ecological region, and (2) to project changes in SOC stocks –

for defined changes in land use and management – using an

empirical model (Batjes, 2004b, 2006). The latter procedure

included a physical land evaluation (FAO, 1976; Rossiter,

1996; Sys et al., 1993) which, similar to Global Agro-

Ecological Zoning (GAEZ) procedures (FAO, 1996; Fischer

et al., 2002), allows filtering-out of areas that are considered

biophysically (un)suited for the proposed land use/manage-

ment types (scenarios). For example, a particular soil unit

may be too saline for growing a specific crop under the

specified conditions of land management and inputs.

Caution is required when assessing the effects of land use

change on SOC stocks without explicitly considering

differences in soil types (Lettens et al., 2005). Considering

such differences is also important when assessing possible

effects of water erosion on crop production (Mantel and van

Engelen, 1999), proposing alternative approaches to

intensively managed land (Bouma, 2001; Bouma et al.,

1998a), and assessing soil gaseous emissions (Bouwman

et al., 2002; van Bodegom et al., 2002). Future releases of

the GEFSOC system, therefore, should also consider soil

properties other than clay content and wetness. In principle,

this could be done using the range of soil variables presented

in the secondary SOTER databases (Table 1).

5. Discussion and conclusions

The secondary SOTER data for Amazon-Brazil, IGP-

India, Jordan, and Kenya can be used for a wide range of

environmental applications at national scale; this paper

focussed on the assessment of SOC stocks. Estimates of

SOC stocks using SOTER-methods were comparable to

existing estimates based on conventional map-based

approaches (Brazil and IGP-India). Further, to our knowl-

edge, the GEFSOC project presented the first estimates of

SOC stocks for Kenya and Jordan. Independent SOC

estimates of the type presented here are essential to evaluate

the output of modelling tools, such as the GEFSOC system.

The primary soil geographic and attribute data were

typically compiled from multiple sources; data processing

often involved complex issues of data acquisition, quality

control and data harmonization (see Batjes, 2001). By

implication, various sources of uncertainty will always

remain in the derived data even though thesewere based on the

best – and sometimes only – available data, thorough data

integrity checks, and an elaborate scheme of taxotransfer- and

expert-rules to fill gaps in the measured soil analytical data

(Batjes, 2003). These possible limitations must be understood

and accepted when using the secondary SOTER data.

Similarly, various sources and types of uncertainty will be

attached to the approaches and models used (Burrough, 1986;

Smith et al., 1997, 2002). A particularly complex issue is that

which relates to the structure or formulation of the decision-

rules and the model itself. Projections relating to the

development of the different C-pools in soils under changing

environmental conditions and land use/management remain

difficult (Kogel-Knabner et al., 2005). Estimates of SOC

stocks and changes thus will remain fraught with uncertainty,

irrespective of scale (IPCC, 2003; Watson et al., 2000;

WBGU, 2003); it is important that this uncertainty be
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Table 4

Estimates of baseline SOC stocks

Study area Area

(�1000 km2)

Depth (cm) Organic carbon

(Tg C)a

Amazon-Brazil 5100 0–30 23,943–24,151

0–100 42,343–43,814

IGP-India 480 0–30 572–587

0–100 1163–1184

Jordan 89 0–30 76–78

0–100 136–139

Kenya 582 0–30 1892–1911

0–100 3669–3715

a Data shown are 95% confidence intervals for the median; for meth-

odological details see Batjes (2004b). 1 Tg C = 1012 g C.
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quantified (Falloon and Smith, 2003; Raupach et al., 2005).

Hence, the present use of 95% confidence intervals for

presenting estimates for the median, national scale SOC

stocks.
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